Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Centroid Distance Distillation for Effective Rehearsal in Continual Learning (2303.02954v1)

Published 6 Mar 2023 in cs.LG and cs.CV

Abstract: Rehearsal, retraining on a stored small data subset of old tasks, has been proven effective in solving catastrophic forgetting in continual learning. However, due to the sampled data may have a large bias towards the original dataset, retraining them is susceptible to driving continual domain drift of old tasks in feature space, resulting in forgetting. In this paper, we focus on tackling the continual domain drift problem with centroid distance distillation. First, we propose a centroid caching mechanism for sampling data points based on constructed centroids to reduce the sample bias in rehearsal. Then, we present a centroid distance distillation that only stores the centroid distance to reduce the continual domain drift. The experiments on four continual learning datasets show the superiority of the proposed method, and the continual domain drift can be reduced.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.