Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

An Analysis of Physics-Informed Neural Networks (2303.02890v1)

Published 6 Mar 2023 in cs.LG, cs.NA, math.DS, and math.NA

Abstract: Whilst the partial differential equations that govern the dynamics of our world have been studied in great depth for centuries, solving them for complex, high-dimensional conditions and domains still presents an incredibly large mathematical and computational challenge. Analytical methods can be cumbersome to utilise, and numerical methods can lead to errors and inaccuracies. On top of this, sometimes we lack the information or knowledge to pose the problem well enough to apply these kinds of methods. Here, we present a new approach to approximating the solution to physical systems - physics-informed neural networks. The concept of artificial neural networks is introduced, the objective function is defined, and optimisation strategies are discussed. The partial differential equation is then included as a constraint in the loss function for the optimisation problem, giving the network access to knowledge of the dynamics of the physical system it is modelling. Some intuitive examples are displayed, and more complex applications are considered to showcase the power of physics informed neural networks, such as in seismic imaging. Solution error is analysed, and suggestions are made to improve convergence and/or solution precision. Problems and limitations are also touched upon in the conclusions, as well as some thoughts as to where physics informed neural networks are most useful, and where they could go next.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)