Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Swim: A General-Purpose, High-Performing, and Efficient Activation Function for Locomotion Control Tasks (2303.02640v1)

Published 5 Mar 2023 in cs.LG, cs.NE, and cs.RO

Abstract: Activation functions play a significant role in the performance of deep learning algorithms. In particular, the Swish activation function tends to outperform ReLU on deeper models, including deep reinforcement learning models, across challenging tasks. Despite this progress, ReLU is the preferred function partly because it is more efficient than Swish. Furthermore, in contrast to the fields of computer vision and natural language processing, the deep reinforcement learning and robotics domains have seen less inclination to adopt new activation functions, such as Swish, and instead continue to use more traditional functions, like ReLU. To tackle those issues, we propose Swim, a general-purpose, efficient, and high-performing alternative to Swish, and then provide an analysis of its properties as well as an explanation for its high-performance relative to Swish, in terms of both reward-achievement and efficiency. We focus on testing Swim on MuJoCo's locomotion continuous control tasks since they exhibit more complex dynamics and would therefore benefit most from a high-performing and efficient activation function. We also use the TD3 algorithm in conjunction with Swim and explain this choice in the context of the robot locomotion domain. We then conclude that Swim is a state-of-the-art activation function for continuous control locomotion tasks and recommend using it with TD3 as a working framework.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube