Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Tight Collision Probability for UAV Motion Planning in Uncertain Environment (2303.02607v3)

Published 5 Mar 2023 in cs.RO

Abstract: Operating unmanned aerial vehicles (UAVs) in complex environments that feature dynamic obstacles and external disturbances poses significant challenges, primarily due to the inherent uncertainty in such scenarios. Additionally, inaccurate robot localization and modeling errors further exacerbate these challenges. Recent research on UAV motion planning in static environments has been unable to cope with the rapidly changing surroundings, resulting in trajectories that may not be feasible. Moreover, previous approaches that have addressed dynamic obstacles or external disturbances in isolation are insufficient to handle the complexities of such environments. This paper proposes a reliable motion planning framework for UAVs, integrating various uncertainties into a chance constraint that characterizes the uncertainty in a probabilistic manner. The chance constraint provides a probabilistic safety certificate by calculating the collision probability between the robot's Gaussian-distributed forward reachable set and states of obstacles. To reduce the conservatism of the planned trajectory, we propose a tight upper bound of the collision probability and evaluate it both exactly and approximately. The approximated solution is used to generate motion primitives as a reference trajectory, while the exact solution is leveraged to iteratively optimize the trajectory for better results. Our method is thoroughly tested in simulation and real-world experiments, verifying its reliability and effectiveness in uncertain environments.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.