Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

MetaGrad: Adaptive Gradient Quantization with Hypernetworks (2303.02347v2)

Published 4 Mar 2023 in cs.CV

Abstract: A popular track of network compression approach is Quantization aware Training (QAT), which accelerates the forward pass during the neural network training and inference. However, not much prior efforts have been made to quantize and accelerate the backward pass during training, even though that contributes around half of the training time. This can be partly attributed to the fact that errors of low-precision gradients during backward cannot be amortized by the training objective as in the QAT setting. In this work, we propose to solve this problem by incorporating the gradients into the computation graph of the next training iteration via a hypernetwork. Various experiments on CIFAR-10 dataset with different CNN network architectures demonstrate that our hypernetwork-based approach can effectively reduce the negative effect of gradient quantization noise and successfully quantizes the gradients to INT4 with only 0.64 accuracy drop for VGG-16 on CIFAR-10.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.