Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Training-Free Acceleration of ViTs with Delayed Spatial Merging (2303.02331v2)

Published 4 Mar 2023 in cs.CV, cs.AI, and cs.LG

Abstract: Token merging has emerged as a new paradigm that can accelerate the inference of Vision Transformers (ViTs) without any retraining or fine-tuning. To push the frontier of training-free acceleration in ViTs, we improve token merging by adding the perspectives of 1) activation outliers and 2) hierarchical representations. Through a careful analysis of the attention behavior in ViTs, we characterize a delayed onset of the convergent attention phenomenon, which makes token merging undesirable in the bottom blocks of ViTs. Moreover, we augment token merging with a hierarchical processing scheme to capture multi-scale redundancy between visual tokens. Combining these two insights, we build a unified inference framework called DSM: Delayed Spatial Merging. We extensively evaluate DSM on various ViT model scales (Tiny to Huge) and tasks (ImageNet-1k and transfer learning), achieving up to 1.8$\times$ FLOP reduction and 1.6$\times$ throughput speedup at a negligible loss while being two orders of magnitude faster than existing methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.