Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

AIRU-WRF: A Physics-Guided Spatio-Temporal Wind Forecasting Model and its Application to the U.S. Mid Atlantic Offshore Wind Energy Areas (2303.02246v2)

Published 3 Mar 2023 in stat.AP, cs.SY, and eess.SY

Abstract: The reliable integration of wind energy into modern-day electricity systems heavily relies on accurate short-term wind forecasts. We propose a spatio-temporal model called AIRU-WRF (short for the AI-powered Rutgers University Weather Research & Forecasting), which combines numerical weather predictions (NWPs) with local observations in order to make wind speed forecasts that are short-term (minutes to hours ahead), and of high resolution, both spatially (site-specific) and temporally (minute-level). In contrast to purely data-driven methods, we undertake a "physics-guided" machine learning approach which captures salient physical features of the local wind field without the need to explicitly solve for those physics, including: (i) modeling wind field advection and diffusion via physically meaningful kernel functions, (ii) integrating exogenous predictors that are both meteorologically relevant and statistically significant; and (iii) linking the multi-type NWP biases to their driving mesoscale weather conditions. Tested on real-world data from the U.S. North Atlantic where several offshore wind projects are in-development, AIRU-WRF achieves notable improvements, in terms of both wind speed and power, relative to various forecasting benchmarks including physics-based, hybrid, statistical, and deep learning methods.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.