Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Feature Selection with Annealing for Forecasting Financial Time Series (2303.02223v3)

Published 3 Mar 2023 in cs.LG and q-fin.CP

Abstract: Stock market and cryptocurrency forecasting is very important to investors as they aspire to achieve even the slightest improvement to their buy or hold strategies so that they may increase profitability. However, obtaining accurate and reliable predictions is challenging, noting that accuracy does not equate to reliability, especially when financial time-series forecasting is applied owing to its complex and chaotic tendencies. To mitigate this complexity, this study provides a comprehensive method for forecasting financial time series based on tactical input output feature mapping techniques using ML models. During the prediction process, selecting the relevant indicators is vital to obtaining the desired results. In the financial field, limited attention has been paid to this problem with ML solutions. We investigate the use of feature selection with annealing (FSA) for the first time in this field, and we apply the least absolute shrinkage and selection operator (Lasso) method to select the features from more than 1,000 candidates obtained from 26 technical classifiers with different periods and lags. Boruta (BOR) feature selection, a wrapper method, is used as a baseline for comparison. Logistic regression (LR), extreme gradient boosting (XGBoost), and long short-term memory (LSTM) are then applied to the selected features for forecasting purposes using 10 different financial datasets containing cryptocurrencies and stocks. The dependent variables consisted of daily logarithmic returns and trends. The mean-squared error for regression, area under the receiver operating characteristic curve, and classification accuracy were used to evaluate model performance, and the statistical significance of the forecasting results was tested using paired t-tests. Experiments indicate that the FSA algorithm increased the performance of ML models, regardless of problem type.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.