Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Exploring Data Augmentation Methods on Social Media Corpora (2303.02198v1)

Published 3 Mar 2023 in cs.CL

Abstract: Data augmentation has proven widely effective in computer vision. In NLP data augmentation remains an area of active research. There is no widely accepted augmentation technique that works well across tasks and model architectures. In this paper we explore data augmentation techniques in the context of text classification using two social media datasets. We explore popular varieties of data augmentation, starting with oversampling, Easy Data Augmentation (Wei and Zou, 2019) and Back-Translation (Sennrich et al., 2015). We also consider Greyscaling, a relatively unexplored data augmentation technique that seeks to mitigate the intensity of adjectives in examples. Finally, we consider a few-shot learning approach: Pattern-Exploiting Training (PET) (Schick et al., 2020). For the experiments we use a BERT transformer architecture. Results show that augmentation techniques provide only minimal and inconsistent improvements. Synonym replacement provided evidence of some performance improvement and adjective scales with Grayscaling is an area where further exploration would be valuable. Few-shot learning experiments show consistent improvement over supervised training, and seem very promising when classes are easily separable but further exploration would be valuable.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.