Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Robust Parameter Estimation for Rational Ordinary Differential Equations (2303.02159v3)

Published 2 Mar 2023 in cs.MS, cs.SC, math.DS, and q-bio.QM

Abstract: We present a new approach for estimating parameters in rational ODE models from given (measured) time series data. In typical existing approaches, an initial guess for the parameter values is made from a given search interval. Then, in a loop, the corresponding outputs are computed by solving the ODE numerically, followed by computing the error from the given time series data. If the error is small, the loop terminates and the parameter values are returned. Otherwise, heuristics/theories are used to possibly improve the guess and continue the loop. These approaches tend to be non-robust in the sense that their accuracy depend on the search interval and the true parameter values; furthermore, they cannot handle the case where the parameters are locally identifiable. In this paper, we propose a new approach, which does not suffer from the above non-robustness. In particular, it does not require making good initial guesses for the parameter values or specifying search intervals. Instead, it uses differential algebra, interpolation of the data using rational functions, and multivariate polynomial system solving. We also compare the performance of the resulting software with several other estimation software packages.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.