Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zero-shot Object Counting (2303.02001v2)

Published 3 Mar 2023 in cs.CV

Abstract: Class-agnostic object counting aims to count object instances of an arbitrary class at test time. It is challenging but also enables many potential applications. Current methods require human-annotated exemplars as inputs which are often unavailable for novel categories, especially for autonomous systems. Thus, we propose zero-shot object counting (ZSC), a new setting where only the class name is available during test time. Such a counting system does not require human annotators in the loop and can operate automatically. Starting from a class name, we propose a method that can accurately identify the optimal patches which can then be used as counting exemplars. Specifically, we first construct a class prototype to select the patches that are likely to contain the objects of interest, namely class-relevant patches. Furthermore, we introduce a model that can quantitatively measure how suitable an arbitrary patch is as a counting exemplar. By applying this model to all the candidate patches, we can select the most suitable patches as exemplars for counting. Experimental results on a recent class-agnostic counting dataset, FSC-147, validate the effectiveness of our method. Code is available at https://github.com/cvlab-stonybrook/zero-shot-counting

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jingyi Xu (49 papers)
  2. Hieu Le (52 papers)
  3. Vu Nguyen (45 papers)
  4. Viresh Ranjan (10 papers)
  5. Dimitris Samaras (125 papers)
Citations (28)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com