Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Graph-based Extreme Feature Selection for Multi-class Classification Tasks (2303.01792v1)

Published 3 Mar 2023 in cs.LG

Abstract: When processing high-dimensional datasets, a common pre-processing step is feature selection. Filter-based feature selection algorithms are not tailored to a specific classification method, but rather rank the relevance of each feature with respect to the target and the task. This work focuses on a graph-based, filter feature selection method that is suited for multi-class classifications tasks. We aim to drastically reduce the number of selected features, in order to create a sketch of the original data that codes valuable information for the classification task. The proposed graph-based algorithm is constructed by combing the Jeffries-Matusita distance with a non-linear dimension reduction method, diffusion maps. Feature elimination is performed based on the distribution of the features in the low-dimensional space. Then, a very small number of feature that have complementary separation strengths, are selected. Moreover, the low-dimensional embedding allows to visualize the feature space. Experimental results are provided for public datasets and compared with known filter-based feature selection techniques.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.