Papers
Topics
Authors
Recent
2000 character limit reached

Implicit Stochastic Gradient Descent for Training Physics-informed Neural Networks (2303.01767v1)

Published 3 Mar 2023 in cs.LG

Abstract: Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems, but they are still trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features. In this paper, we propose to employ implicit stochastic gradient descent (ISGD) method to train PINNs for improving the stability of training process. We heuristically analyze how ISGD overcome stiffness in the gradient flow dynamics of PINNs, especially for problems with multi-scale solutions. We theoretically prove that for two-layer fully connected neural networks with large hidden nodes, randomly initialized ISGD converges to a globally optimal solution for the quadratic loss function. Empirical results demonstrate that ISGD works well in practice and compares favorably to other gradient-based optimization methods such as SGD and Adam, while can also effectively address the numerical stiffness in training dynamics via gradient descent.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.