Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

High-dimensional analysis of double descent for linear regression with random projections (2303.01372v2)

Published 2 Mar 2023 in cs.LG and stat.ML

Abstract: We consider linear regression problems with a varying number of random projections, where we provably exhibit a double descent curve for a fixed prediction problem, with a high-dimensional analysis based on random matrix theory. We first consider the ridge regression estimator and review earlier results using classical notions from non-parametric statistics, namely degrees of freedom, also known as effective dimensionality. We then compute asymptotic equivalents of the generalization performance (in terms of squared bias and variance) of the minimum norm least-squares fit with random projections, providing simple expressions for the double descent phenomenon.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com