Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Co-learning Planning and Control Policies Constrained by Differentiable Logic Specifications (2303.01346v3)

Published 2 Mar 2023 in cs.RO, cs.LG, cs.SY, and eess.SY

Abstract: Synthesizing planning and control policies in robotics is a fundamental task, further complicated by factors such as complex logic specifications and high-dimensional robot dynamics. This paper presents a novel reinforcement learning approach to solving high-dimensional robot navigation tasks with complex logic specifications by co-learning planning and control policies. Notably, this approach significantly reduces the sample complexity in training, allowing us to train high-quality policies with much fewer samples compared to existing reinforcement learning algorithms. In addition, our methodology streamlines complex specification extraction from map images and enables the efficient generation of long-horizon robot motion paths across different map layouts. Moreover, our approach also demonstrates capabilities for high-dimensional control and avoiding suboptimal policies via policy alignment. The efficacy of our approach is demonstrated through experiments involving simulated high-dimensional quadruped robot dynamics and a real-world differential drive robot (TurtleBot3) under different types of task specifications.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.