Papers
Topics
Authors
Recent
2000 character limit reached

Learning Language-Conditioned Deformable Object Manipulation with Graph Dynamics (2303.01310v3)

Published 2 Mar 2023 in cs.RO

Abstract: Multi-task learning of deformable object manipulation is a challenging problem in robot manipulation. Most previous works address this problem in a goal-conditioned way and adapt goal images to specify different tasks, which limits the multi-task learning performance and can not generalize to new tasks. Thus, we adapt language instruction to specify deformable object manipulation tasks and propose a learning framework. We first design a unified Transformer-based architecture to understand multi-modal data and output picking and placing action. Besides, we have introduced the visible connectivity graph to tackle nonlinear dynamics and complex configuration of the deformable object. Both simulated and real experiments have demonstrated that the proposed method is effective and can generalize to unseen instructions and tasks. Compared with the state-of-the-art method, our method achieves higher success rates (87.2% on average) and has a 75.6% shorter inference time. We also demonstrate that our method performs well in real-world experiments.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.