Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

OPE-SR: Orthogonal Position Encoding for Designing a Parameter-free Upsampling Module in Arbitrary-scale Image Super-Resolution (2303.01091v1)

Published 2 Mar 2023 in cs.CV

Abstract: Implicit neural representation (INR) is a popular approach for arbitrary-scale image super-resolution (SR), as a key component of INR, position encoding improves its representation ability. Motivated by position encoding, we propose orthogonal position encoding (OPE) - an extension of position encoding - and an OPE-Upscale module to replace the INR-based upsampling module for arbitrary-scale image super-resolution. Same as INR, our OPE-Upscale Module takes 2D coordinates and latent code as inputs; however it does not require training parameters. This parameter-free feature allows the OPE-Upscale Module to directly perform linear combination operations to reconstruct an image in a continuous manner, achieving an arbitrary-scale image reconstruction. As a concise SR framework, our method has high computing efficiency and consumes less memory comparing to the state-of-the-art (SOTA), which has been confirmed by extensive experiments and evaluations. In addition, our method has comparable results with SOTA in arbitrary scale image super-resolution. Last but not the least, we show that OPE corresponds to a set of orthogonal basis, justifying our design principle.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.