Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 149 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Targeted Adversarial Attacks against Neural Machine Translation (2303.01068v1)

Published 2 Mar 2023 in cs.CL, cs.CR, and cs.LG

Abstract: Neural Machine Translation (NMT) systems are used in various applications. However, it has been shown that they are vulnerable to very small perturbations of their inputs, known as adversarial attacks. In this paper, we propose a new targeted adversarial attack against NMT models. In particular, our goal is to insert a predefined target keyword into the translation of the adversarial sentence while maintaining similarity between the original sentence and the perturbed one in the source domain. To this aim, we propose an optimization problem, including an adversarial loss term and a similarity term. We use gradient projection in the embedding space to craft an adversarial sentence. Experimental results show that our attack outperforms Seq2Sick, the other targeted adversarial attack against NMT models, in terms of success rate and decrease in translation quality. Our attack succeeds in inserting a keyword into the translation for more than 75% of sentences while similarity with the original sentence stays preserved.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.