Emergent Mind

Abstract

The effectiveness of Neural Machine Translation (NMT) models largely depends on the vocabulary used at training; small vocabularies can lead to out-of-vocabulary problems -- large ones, to memory issues. Subword (SW) tokenization has been successfully employed to mitigate these issues. The choice of vocabulary and SW tokenization has a significant impact on both training and fine-tuning an NMT model. Fine-tuning is a common practice in optimizing an MT model with respect to new data. However, new data potentially introduces new words (or tokens), which, if not taken into consideration, may lead to suboptimal performance. In addition, the distribution of tokens in the new data can differ from the distribution of the original data. As such, the original SW tokenization model could be less suitable for the new data. Through a systematic empirical evaluation, in this work we compare different strategies for SW tokenization and vocabulary generation with the ultimate goal to uncover an optimal setting for fine-tuning a domain-specific model. Furthermore, we developed several (in-domain) models, the best of which achieves 6 BLEU points improvement over the baseline.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.