Assessing the Finite-Time Stability of Nonlinear Systems by means of Physics-Informed Neural Networks (2303.00437v1)
Abstract: In this paper, the problem of assessing the Finite-Time Stability (FTS) property for general nonlinear systems is considered. First, some necessary and sufficient conditions that guarantee the FTS of general nonlinear systems are provided; such conditions are expressed in terms of the existence of a suitable Lyapunov-like function. Connections of the main theoretical result of given in this article with the typical conditions based on Linear Matrix Inequalities (LMI) that are used for Linear Time-Varying (LTV) systems are discussed. An extension to the case of discrete time systems is also provided. Then, we propose a method to verify the obtained conditions for a very broad class of nonlinear systems. The proposed technique leverages the capability of neural networks to serve as universal function approximators to obtain the Lyapunov-like function. The network training data are generated by enforcing the conditions defining such function in a (large) set of collocation points, as in the case of Physics-Informed Neural Networks. To illustrate the effectiveness of the proposed approach, some numerical examples are proposed and discussed. The technique proposed in this paper allows to obtain the required Lyapunov-like function in closed form. This has the twofold advantage of a) providing a practical way to verify the considered FTS property for a very general class of systems, with an unprecedented flexibility in the FTS context, and b) paving the way to control applications based on Lyapunov methods in the framework of Finite-Time Stability and Control.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.