Papers
Topics
Authors
Recent
2000 character limit reached

Auxiliary MCMC and particle Gibbs samplers for parallelisable inference in latent dynamical systems (2303.00301v3)

Published 1 Mar 2023 in stat.CO, cs.DC, and stat.ML

Abstract: Sampling from the full posterior distribution of high-dimensional non-linear, non-Gaussian latent dynamical models presents significant computational challenges. While Particle Gibbs (also known as conditional sequential Monte Carlo) is considered the gold standard for this task, it quickly degrades in performance as the latent space dimensionality increases. Conversely, globally Gaussian-approximated methods like extended Kalman filtering, though more robust, are seldom used for posterior sampling due to their inherent bias. We introduce novel auxiliary sampling approaches that address these limitations. By incorporating artificial observations of the system as auxiliary variables in our MCMC kernels, we develop both efficient exact Kalman-based samplers and enhanced Particle Gibbs algorithms that maintain performance in high-dimensional latent spaces. Some of our methods support parallelisation along the time dimension, achieving logarithmic scaling when implemented on GPUs. Empirical evaluations demonstrate superior statistical and computational performance compared to existing approaches for high-dimensional latent dynamical systems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.