Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On the Integration of Physics-Based Machine Learning with Hierarchical Bayesian Modeling Techniques (2303.00187v1)

Published 1 Mar 2023 in stat.ML and cs.LG

Abstract: Machine Learning (ML) has widely been used for modeling and predicting physical systems. These techniques offer high expressive power and good generalizability for interpolation within observed data sets. However, the disadvantage of black-box models is that they underperform under blind conditions since no physical knowledge is incorporated. Physics-based ML aims to address this problem by retaining the mathematical flexibility of ML techniques while incorporating physics. In accord, this paper proposes to embed mechanics-based models into the mean function of a Gaussian Process (GP) model and characterize potential discrepancies through kernel machines. A specific class of kernel function is promoted, which has a connection with the gradient of the physics-based model with respect to the input and parameters and shares similarity with the exact Autocovariance function of linear dynamical systems. The spectral properties of the kernel function enable considering dominant periodic processes originating from physics misspecification. Nevertheless, the stationarity of the kernel function is a difficult hurdle in the sequential processing of long data sets, resolved through hierarchical Bayesian techniques. This implementation is also advantageous to mitigate computational costs, alleviating the scalability of GPs when dealing with sequential data. Using numerical and experimental examples, potential applications of the proposed method to structural dynamics inverse problems are demonstrated.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube