Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

HyScale-GNN: A Scalable Hybrid GNN Training System on Single-Node Heterogeneous Architecture (2303.00158v1)

Published 1 Mar 2023 in cs.DC

Abstract: Graph Neural Networks (GNNs) have shown success in many real-world applications that involve graph-structured data. Most of the existing single-node GNN training systems are capable of training medium-scale graphs with tens of millions of edges; however, scaling them to large-scale graphs with billions of edges remains challenging. In addition, it is challenging to map GNN training algorithms onto a computation node as state-of-the-art machines feature heterogeneous architecture consisting of multiple processors and a variety of accelerators. We propose HyScale-GNN, a novel system to train GNN models on a single-node heterogeneous architecture. HyScale- GNN performs hybrid training which utilizes both the processors and the accelerators to train a model collaboratively. Our system design overcomes the memory size limitation of existing works and is optimized for training GNNs on large-scale graphs. We propose a two-stage data pre-fetching scheme to reduce the communication overhead during GNN training. To improve task mapping efficiency, we propose a dynamic resource management mechanism, which adjusts the workload assignment and resource allocation during runtime. We evaluate HyScale-GNN on a CPU-GPU and a CPU-FPGA heterogeneous architecture. Using several large-scale datasets and two widely-used GNN models, we compare the performance of our design with a multi-GPU baseline implemented in PyTorch-Geometric. The CPU-GPU design and the CPU-FPGA design achieve up to 2.08x speedup and 12.6x speedup, respectively. Compared with the state-of-the-art large-scale multi-node GNN training systems such as P3 and DistDGL, our CPU-FPGA design achieves up to 5.27x speedup using a single node.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube