Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multi-view Semantic Consistency based Information Bottleneck for Clustering (2303.00002v1)

Published 28 Feb 2023 in cs.LG and cs.AI

Abstract: Multi-view clustering can make use of multi-source information for unsupervised clustering. Most existing methods focus on learning a fused representation matrix, while ignoring the influence of private information and noise. To address this limitation, we introduce a novel Multi-view Semantic Consistency based Information Bottleneck for clustering (MSCIB). Specifically, MSCIB pursues semantic consistency to improve the learning process of information bottleneck for different views. It conducts the alignment operation of multiple views in the semantic space and jointly achieves the valuable consistent information of multi-view data. In this way, the learned semantic consistency from multi-view data can improve the information bottleneck to more exactly distinguish the consistent information and learn a unified feature representation with more discriminative consistent information for clustering. Experiments on various types of multi-view datasets show that MSCIB achieves state-of-the-art performance.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.