Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

deHuBERT: Disentangling Noise in a Self-supervised Model for Robust Speech Recognition (2302.14597v1)

Published 28 Feb 2023 in cs.SD and eess.AS

Abstract: Existing self-supervised pre-trained speech models have offered an effective way to leverage massive unannotated corpora to build good automatic speech recognition (ASR). However, many current models are trained on a clean corpus from a single source, which tends to do poorly when noise is present during testing. Nonetheless, it is crucial to overcome the adverse influence of noise for real-world applications. In this work, we propose a novel training framework, called deHuBERT, for noise reduction encoding inspired by H. Barlow's redundancy-reduction principle. The new framework improves the HuBERT training algorithm by introducing auxiliary losses that drive the self- and cross-correlation matrix between pairwise noise-distorted embeddings towards identity matrix. This encourages the model to produce noise-agnostic speech representations. With this method, we report improved robustness in noisy environments, including unseen noises, without impairing the performance on the clean set.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.