Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

DEff-GAN: Diverse Attribute Transfer for Few-Shot Image Synthesis (2302.14533v1)

Published 28 Feb 2023 in cs.CV

Abstract: Requirements of large amounts of data is a difficulty in training many GANs. Data efficient GANs involve fitting a generators continuous target distribution with a limited discrete set of data samples, which is a difficult task. Single image methods have focused on modeling the internal distribution of a single image and generating its samples. While single image methods can synthesize image samples with diversity, they do not model multiple images or capture the inherent relationship possible between two images. Given only a handful of images, we are interested in generating samples and exploiting the commonalities in the input images. In this work, we extend the single-image GAN method to model multiple images for sample synthesis. We modify the discriminator with an auxiliary classifier branch, which helps to generate a wide variety of samples and to classify the input labels. Our Data-Efficient GAN (DEff-GAN) generates excellent results when similarities and correspondences can be drawn between the input images or classes.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.