Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Formalization of $p$-adic $L$-functions in Lean 3 (2302.14491v1)

Published 28 Feb 2023 in math.NT and cs.LO

Abstract: The Euler--Riemann zeta function is a largely studied numbertheoretic object, and the birthplace of several conjectures, such as the Riemann Hypothesis. Different approaches are used to study it, including $p$-adic analysis : deriving information from $p$-adic zeta functions. A generalized version of $p$-adic zeta functions (Riemann zeta function) are $p$-adic $L$-functions (resp. Dirichlet $L$-functions). This paper describes formalization of $p$-adic $L$-functions in an interactive theorem prover Lean 3. Kubota--Leopoldt $p$-adic $L$-functions are meromorphic functions emerging from the special values they take at negative integers in terms of generalized Bernoulli numbers. They also take twisted values of the Dirichlet $L$-function at negative integers. This work has never been done before in any theorem prover. Our work is done with the support of \lean{mathlib} 3, one of Lean's mathematical libraries. It required formalization of a lot of associated topics, such as Dirichlet characters, Bernoulli polynomials etc. We formalize these first, then the definition of a $p$-adic $L$-function in terms of an integral with respect to the Bernoulli measure, proving that they take the required values at negative integers.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)