Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Formalization of $p$-adic $L$-functions in Lean 3 (2302.14491v1)

Published 28 Feb 2023 in math.NT and cs.LO

Abstract: The Euler--Riemann zeta function is a largely studied numbertheoretic object, and the birthplace of several conjectures, such as the Riemann Hypothesis. Different approaches are used to study it, including $p$-adic analysis : deriving information from $p$-adic zeta functions. A generalized version of $p$-adic zeta functions (Riemann zeta function) are $p$-adic $L$-functions (resp. Dirichlet $L$-functions). This paper describes formalization of $p$-adic $L$-functions in an interactive theorem prover Lean 3. Kubota--Leopoldt $p$-adic $L$-functions are meromorphic functions emerging from the special values they take at negative integers in terms of generalized Bernoulli numbers. They also take twisted values of the Dirichlet $L$-function at negative integers. This work has never been done before in any theorem prover. Our work is done with the support of \lean{mathlib} 3, one of Lean's mathematical libraries. It required formalization of a lot of associated topics, such as Dirichlet characters, Bernoulli polynomials etc. We formalize these first, then the definition of a $p$-adic $L$-function in terms of an integral with respect to the Bernoulli measure, proving that they take the required values at negative integers.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.