Papers
Topics
Authors
Recent
2000 character limit reached

Swin Deformable Attention Hybrid U-Net for Medical Image Segmentation (2302.14450v2)

Published 28 Feb 2023 in eess.IV and cs.CV

Abstract: Medical image segmentation is a crucial task in the field of medical image analysis. Harmonizing the convolution and multi-head self-attention mechanism is a recent research focus in this field, with various combination methods proposed. However, the lack of interpretability of these hybrid models remains a common pitfall, limiting their practical application in clinical scenarios. To address this issue, we propose to incorporate the Shifted Window (Swin) Deformable Attention into a hybrid architecture to improve segmentation performance while ensuring explainability. Our proposed Swin Deformable Attention Hybrid UNet (SDAH-UNet) demonstrates state-of-the-art performance on both anatomical and lesion segmentation tasks. Moreover, we provide a direct and visual explanation of the model focalization and how the model forms it, enabling clinicians to better understand and trust the decision of the model. Our approach could be a promising solution to the challenge of developing accurate and interpretable medical image segmentation models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.