Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Swin Deformable Attention Hybrid U-Net for Medical Image Segmentation (2302.14450v2)

Published 28 Feb 2023 in eess.IV and cs.CV

Abstract: Medical image segmentation is a crucial task in the field of medical image analysis. Harmonizing the convolution and multi-head self-attention mechanism is a recent research focus in this field, with various combination methods proposed. However, the lack of interpretability of these hybrid models remains a common pitfall, limiting their practical application in clinical scenarios. To address this issue, we propose to incorporate the Shifted Window (Swin) Deformable Attention into a hybrid architecture to improve segmentation performance while ensuring explainability. Our proposed Swin Deformable Attention Hybrid UNet (SDAH-UNet) demonstrates state-of-the-art performance on both anatomical and lesion segmentation tasks. Moreover, we provide a direct and visual explanation of the model focalization and how the model forms it, enabling clinicians to better understand and trust the decision of the model. Our approach could be a promising solution to the challenge of developing accurate and interpretable medical image segmentation models.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.