Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Testing the performance of Multi-class IDS public dataset using Supervised Machine Learning Algorithms (2302.14374v1)

Published 28 Feb 2023 in cs.CR and cs.GT

Abstract: Machine learning, statistical-based, and knowledge-based methods are often used to implement an Anomaly-based Intrusion Detection System which is software that helps in detecting malicious and undesired activities in the network primarily through the Internet. Machine learning comprises Supervised, Semi-Supervised, and Unsupervised Learning algorithms. Supervised machine learning uses a trained label dataset. This paper uses four supervised learning algorithms Random Forest, XGBoost, K-Nearest Neighbours, and Artificial Neural Network to test the performance of the public dataset. Based on the prediction accuracy rate, the results show that Random Forest performs better on multi-class Intrusion Detection System, followed by XGBoost, K-Nearest Neighbours respective, provided prediction accuracy is taken into perspective. Otherwise, K-Nearest Neighbours was the best performer considering the time of training as the metric. It concludes that Random Forest is the best-supervised machine learning for Intrusion Detection System

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.