Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Discrete-time Optimal Covariance Steering via Semidefinite Programming (2302.14296v3)

Published 28 Feb 2023 in eess.SY and cs.SY

Abstract: This paper addresses the optimal covariance steering problem for stochastic discrete-time linear systems subject to probabilistic state and control constraints. A method is presented for efficiently attaining the exact solution of the problem based on a lossless convex relaxation of the original non-linear program using semidefinite programming. Both the constrained and the unconstrained versions of the problem with either equality or inequality terminal covariance boundary conditions are addressed. We first prove that the proposed relaxation is lossless for all of the above cases. A numerical example is then provided to illustrate the method. Finally, a comparative study is performed in systems of various sizes and steering horizons to illustrate the advantages of the proposed method in terms of computational resources compared to the state of the art.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. A. Hotz and R. E. Skelton, “Covariance control theory,” International Journal of Control, vol. 46, pp. 13–32, July 1987.
  2. K. M. Grigoriadis and R. E. Skelton, “Minimum-energy covariance controllers,” Automatica, vol. 33, no. 4, pp. 569–578, 1997.
  3. J. A. Primbs and C. H. Sung, “Stochastic receding horizon control of constrained linear systems with state and control multiplicative noise,” IEEE Transactions on Automatic Control, vol. 54, pp. 221–230, Feb. 2009.
  4. M. Farina, L. Giulioni, L. Magni, and R. Scattolini, “A probabilistic approach to model predictive control,” in 52nd IEEE Conference on Decision and Control, (Firenze, Italy), pp. 7734–7739, Dec. 2013.
  5. Y. Chen, T. T. Georgiou, and M. Pavon, “Optimal steering of a linear stochastic system to a final probability distribution, part I,” IEEE Transactions on Automatic Control, vol. 61, pp. 1158–1169, May 2015.
  6. Y. Chen, T. T. Georgiou, and M. Pavon, “Optimal steering of a linear stochastic system to a final probability distribution, part II,” IEEE Transactions on Automatic Control, vol. 61, pp. 1170–1180, May 2015.
  7. E. Bakolas, “Finite-horizon covariance control for discrete-time stochastic linear systems subject to input constraints,” Automatica, vol. 91, pp. 61–68, May 2018.
  8. K. Okamoto, M. Goldshtein, and P. Tsiotras, “Optimal covariance control for stochastic systems under chance constraints,” IEEE Control Systems Letters, vol. 2, pp. 266–271, July 2018.
  9. K. Okamoto and P. Tsiotras, “Stochastic model predictive control for constrained linear systems using optimal covariance steering,” arXiv preprint arXiv:1905.13296, 2019.
  10. K. Okamoto and P. Tsiotras, “Optimal stochastic vehicle path planning using covariance steering,” IEEE Robotics and Automation Letters, vol. 4, pp. 2276–2281, July 2019.
  11. F. Liu and P. Tsiotras, “Optimal covariance steering for continuous-time linear stochastic systems with multiplicative noise,” arXiv preprint arXiv:2206.11735, 2022.
  12. A. D. Saravanos, A. Tsolovikos, E. Bakolas, and E. Theodorou, “Distributed covariance steering with consensus ADMM for stochastic multi-agent systems,” in Proceedings of Robotics: Science and Systems, (Virtual), July 2021.
  13. J. Ridderhof, K. Okamoto, and P. Tsiotras, “Nonlinear uncertainty control with iterative covariance steering,” in IEEE 58th Conference on Decision and Control (CDC), (Nice, France), pp. 3484–3490, Dec. 2019.
  14. A. D. Saravanos, I. M. Balci, E. Bakolas, and E. A. Theodorou, “Distributed model predictive covariance steering,” arXiv preprint arXiv:2212.00398, 2022.
  15. V. Sivaramakrishnan, J. Pilipovsky, M. Oishi, and P. Tsiotras, “Distribution steering for discrete-time linear systems with general disturbances using characteristic functions,” in American Control Conference (ACC), (Atlanta, GA, USA), pp. 4183–4190, June 2022.
  16. V. Renganathan, J. Pilipovsky, and P. Tsiotras, “Distributionally robust covariance steering with optimal risk allocation,” arXiv preprint arXiv:2210.00050, 2022.
  17. F. Liu, G. Rapakoulias, and P. Tsiotras, “Optimal covariance steering for discrete-time linear stochastic systems,” arXiv preprint arXiv:2211.00618, 2022.
  18. I. M. Balci and E. Bakolas, “Covariance steering of discrete-time linear systems with mixed multiplicative and additive noise,” arXiv preprint arXiv:2210.01743, 2022.
  19. I. M. Balci and E. Bakolas, “Exact SDP formulation for discrete-time covariance steering with Wasserstein terminal cost,” arXiv preprint arXiv:2205.10740, 2022.
  20. L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Review, vol. 38, no. 1, pp. 49–95, 1996.
  21. J. Löfberg, “Yalmip : A toolbox for modeling and optimization in MATLAB,” in In Proceedings of the CACSD Conference, (Taipei, Taiwan), 2004.
  22. D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for quadrotors,” in IEEE International Conference on Robotics and Automation, (Shanghai, China), pp. 2520–2525, 2011.
Citations (15)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.