Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Phone and speaker spatial organization in self-supervised speech representations (2302.14055v1)

Published 24 Feb 2023 in cs.SD, cs.CL, and eess.AS

Abstract: Self-supervised representations of speech are currently being widely used for a large number of applications. Recently, some efforts have been made in trying to analyze the type of information present in each of these representations. Most such work uses downstream models to test whether the representations can be successfully used for a specific task. The downstream models, though, typically perform nonlinear operations on the representation extracting information that may not have been readily available in the original representation. In this work, we analyze the spatial organization of phone and speaker information in several state-of-the-art speech representations using methods that do not require a downstream model. We measure how different layers encode basic acoustic parameters such as formants and pitch using representation similarity analysis. Further, we study the extent to which each representation clusters the speech samples by phone or speaker classes using non-parametric statistical testing. Our results indicate that models represent these speech attributes differently depending on the target task used during pretraining.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.