Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 411 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Diacritic Recognition Performance in Arabic ASR (2302.14022v1)

Published 27 Feb 2023 in cs.CL

Abstract: We present an analysis of diacritic recognition performance in Arabic Automatic Speech Recognition (ASR) systems. As most existing Arabic speech corpora do not contain all diacritical marks, which represent short vowels and other phonetic information in Arabic script, current state-of-the-art ASR models do not produce full diacritization in their output. Automatic text-based diacritization has previously been employed both as a pre-processing step to train diacritized ASR, or as a post-processing step to diacritize the resulting ASR hypotheses. It is generally believed that input diacritization degrades ASR performance, but no systematic evaluation of ASR diacritization performance, independent of ASR performance, has been conducted to date. In this paper, we attempt to experimentally clarify whether input diacritiztation indeed degrades ASR quality, and to compare the diacritic recognition performance against text-based diacritization as a post-processing step. We start with pre-trained Arabic ASR models and fine-tune them on transcribed speech data with different diacritization conditions: manual, automatic, and no diacritization. We isolate diacritic recognition performance from the overall ASR performance using coverage and precision metrics. We find that ASR diacritization significantly outperforms text-based diacritization in post-processing, particularly when the ASR model is fine-tuned with manually diacritized transcripts.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.