Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Implicit Poisoning Attacks in Two-Agent Reinforcement Learning: Adversarial Policies for Training-Time Attacks (2302.13851v1)

Published 27 Feb 2023 in cs.LG, cs.AI, cs.CR, and cs.MA

Abstract: In targeted poisoning attacks, an attacker manipulates an agent-environment interaction to force the agent into adopting a policy of interest, called target policy. Prior work has primarily focused on attacks that modify standard MDP primitives, such as rewards or transitions. In this paper, we study targeted poisoning attacks in a two-agent setting where an attacker implicitly poisons the effective environment of one of the agents by modifying the policy of its peer. We develop an optimization framework for designing optimal attacks, where the cost of the attack measures how much the solution deviates from the assumed default policy of the peer agent. We further study the computational properties of this optimization framework. Focusing on a tabular setting, we show that in contrast to poisoning attacks based on MDP primitives (transitions and (unbounded) rewards), which are always feasible, it is NP-hard to determine the feasibility of implicit poisoning attacks. We provide characterization results that establish sufficient conditions for the feasibility of the attack problem, as well as an upper and a lower bound on the optimal cost of the attack. We propose two algorithmic approaches for finding an optimal adversarial policy: a model-based approach with tabular policies and a model-free approach with parametric/neural policies. We showcase the efficacy of the proposed algorithms through experiments.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.