Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

Implicit Poisoning Attacks in Two-Agent Reinforcement Learning: Adversarial Policies for Training-Time Attacks (2302.13851v1)

Published 27 Feb 2023 in cs.LG, cs.AI, cs.CR, and cs.MA

Abstract: In targeted poisoning attacks, an attacker manipulates an agent-environment interaction to force the agent into adopting a policy of interest, called target policy. Prior work has primarily focused on attacks that modify standard MDP primitives, such as rewards or transitions. In this paper, we study targeted poisoning attacks in a two-agent setting where an attacker implicitly poisons the effective environment of one of the agents by modifying the policy of its peer. We develop an optimization framework for designing optimal attacks, where the cost of the attack measures how much the solution deviates from the assumed default policy of the peer agent. We further study the computational properties of this optimization framework. Focusing on a tabular setting, we show that in contrast to poisoning attacks based on MDP primitives (transitions and (unbounded) rewards), which are always feasible, it is NP-hard to determine the feasibility of implicit poisoning attacks. We provide characterization results that establish sufficient conditions for the feasibility of the attack problem, as well as an upper and a lower bound on the optimal cost of the attack. We propose two algorithmic approaches for finding an optimal adversarial policy: a model-based approach with tabular policies and a model-free approach with parametric/neural policies. We showcase the efficacy of the proposed algorithms through experiments.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.