Papers
Topics
Authors
Recent
2000 character limit reached

DST: Deformable Speech Transformer for Emotion Recognition (2302.13729v1)

Published 27 Feb 2023 in cs.SD and eess.AS

Abstract: Enabled by multi-head self-attention, Transformer has exhibited remarkable results in speech emotion recognition (SER). Compared to the original full attention mechanism, window-based attention is more effective in learning fine-grained features while greatly reducing model redundancy. However, emotional cues are present in a multi-granularity manner such that the pre-defined fixed window can severely degrade the model flexibility. In addition, it is difficult to obtain the optimal window settings manually. In this paper, we propose a Deformable Speech Transformer, named DST, for SER task. DST determines the usage of window sizes conditioned on input speech via a light-weight decision network. Meanwhile, data-dependent offsets derived from acoustic features are utilized to adjust the positions of the attention windows, allowing DST to adaptively discover and attend to the valuable information embedded in the speech. Extensive experiments on IEMOCAP and MELD demonstrate the superiority of DST.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.