Online Interval Scheduling with Predictions (2302.13701v2)
Abstract: In online interval scheduling, the input is an online sequence of intervals, and the goal is to accept a maximum number of non-overlapping intervals. In the more general disjoint path allocation problem, the input is a sequence of requests, each consisting of pairs of vertices of a known graph, and the goal is to accept a maximum number of requests forming edge-disjoint paths between accepted pairs. We study a setting with a potentially erroneous prediction specifying the set of requests forming the input sequence and provide tight upper and lower bounds on the competitive ratios of online algorithms as a function of the prediction error. We also present asymptotically tight trade-offs between consistency (competitive ratio with error-free predictions) and robustness (competitive ratio with adversarial predictions) of interval scheduling algorithms. Finally, we provide experimental results on real-world scheduling workloads that confirm our theoretical analysis.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.