Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Duration-aware pause insertion using pre-trained language model for multi-speaker text-to-speech (2302.13652v1)

Published 27 Feb 2023 in eess.AS, cs.CL, cs.LG, and cs.SD

Abstract: Pause insertion, also known as phrase break prediction and phrasing, is an essential part of TTS systems because proper pauses with natural duration significantly enhance the rhythm and intelligibility of synthetic speech. However, conventional phrasing models ignore various speakers' different styles of inserting silent pauses, which can degrade the performance of the model trained on a multi-speaker speech corpus. To this end, we propose more powerful pause insertion frameworks based on a pre-trained LLM. Our approach uses bidirectional encoder representations from transformers (BERT) pre-trained on a large-scale text corpus, injecting speaker embedding to capture various speaker characteristics. We also leverage duration-aware pause insertion for more natural multi-speaker TTS. We develop and evaluate two types of models. The first improves conventional phrasing models on the position prediction of respiratory pauses (RPs), i.e., silent pauses at word transitions without punctuation. It performs speaker-conditioned RP prediction considering contextual information and is used to demonstrate the effect of speaker information on the prediction. The second model is further designed for phoneme-based TTS models and performs duration-aware pause insertion, predicting both RPs and punctuation-indicated pauses (PIPs) that are categorized by duration. The evaluation results show that our models improve the precision and recall of pause insertion and the rhythm of synthetic speech.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube