Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Towards Interpretable Federated Learning (2302.13473v1)

Published 27 Feb 2023 in cs.LG

Abstract: Federated learning (FL) enables multiple data owners to build machine learning models collaboratively without exposing their private local data. In order for FL to achieve widespread adoption, it is important to balance the need for performance, privacy-preservation and interpretability, especially in mission critical applications such as finance and healthcare. Thus, interpretable federated learning (IFL) has become an emerging topic of research attracting significant interest from the academia and the industry alike. Its interdisciplinary nature can be challenging for new researchers to pick up. In this paper, we bridge this gap by providing (to the best of our knowledge) the first survey on IFL. We propose a unique IFL taxonomy which covers relevant works enabling FL models to explain the prediction results, support model debugging, and provide insights into the contributions made by individual data owners or data samples, which in turn, is crucial for allocating rewards fairly to motivate active and reliable participation in FL. We conduct comprehensive analysis of the representative IFL approaches, the commonly adopted performance evaluation metrics, and promising directions towards building versatile IFL techniques.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.