Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Euclidean Contractivity of Neural Networks with Symmetric Weights (2302.13452v3)

Published 27 Feb 2023 in math.OC, cs.SY, and eess.SY

Abstract: This paper investigates stability conditions of continuous-time Hopfield and firing-rate neural networks by leveraging contraction theory. First, we present a number of useful general algebraic results on matrix polytopes and products of symmetric matrices. Then, we give sufficient conditions for strong and weak Euclidean contractivity, i.e., contractivity with respect to the $\ell_2$ norm, of both models with symmetric weights and (possibly) non-smooth activation functions. Our contraction analysis leads to contraction rates which are log-optimal in almost all symmetric synaptic matrices. Finally, we use our results to propose a firing-rate neural network model to solve a quadratic optimization problem with box constraints.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.