Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

MCoCo: Multi-level Consistency Collaborative Multi-view Clustering (2302.13339v2)

Published 26 Feb 2023 in cs.LG

Abstract: Multi-view clustering can explore consistent information from different views to guide clustering. Most existing works focus on pursuing shallow consistency in the feature space and integrating the information of multiple views into a unified representation for clustering. These methods did not fully consider and explore the consistency in the semantic space. To address this issue, we proposed a novel Multi-level Consistency Collaborative learning framework (MCoCo) for multi-view clustering. Specifically, MCoCo jointly learns cluster assignments of multiple views in feature space and aligns semantic labels of different views in semantic space by contrastive learning. Further, we designed a multi-level consistency collaboration strategy, which utilizes the consistent information of semantic space as a self-supervised signal to collaborate with the cluster assignments in feature space. Thus, different levels of spaces collaborate with each other while achieving their own consistency goals, which makes MCoCo fully mine the consistent information of different views without fusion. Compared with state-of-the-art methods, extensive experiments demonstrate the effectiveness and superiority of our method.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.