Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

TransferD2: Automated Defect Detection Approach in Smart Manufacturing using Transfer Learning Techniques (2302.13317v1)

Published 26 Feb 2023 in cs.CV, cs.AI, and cs.LG

Abstract: Quality assurance is crucial in the smart manufacturing industry as it identifies the presence of defects in finished products before they are shipped out. Modern machine learning techniques can be leveraged to provide rapid and accurate detection of these imperfections. We, therefore, propose a transfer learning approach, namely TransferD2, to correctly identify defects on a dataset of source objects and extend its application to new unseen target objects. We present a data enhancement technique to generate a large dataset from the small source dataset for building a classifier. We then integrate three different pre-trained models (Xception, ResNet101V2, and InceptionResNetV2) into the classifier network and compare their performance on source and target data. We use the classifier to detect the presence of imperfections on the unseen target data using pseudo-bounding boxes. Our results show that ResNet101V2 performs best on the source data with an accuracy of 95.72%. Xception performs best on the target data with an accuracy of 91.00% and also provides a more accurate prediction of the defects on the target images. Throughout the experiment, the results also indicate that the choice of a pre-trained model is not dependent on the depth of the network. Our proposed approach can be applied in defect detection applications where insufficient data is available for training a model and can be extended to identify imperfections in new unseen data.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube