Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 124 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

PaRK-Detect: Towards Efficient Multi-Task Satellite Imagery Road Extraction via Patch-Wise Keypoints Detection (2302.13263v1)

Published 26 Feb 2023 in cs.CV

Abstract: Automatically extracting roads from satellite imagery is a fundamental yet challenging computer vision task in the field of remote sensing. Pixel-wise semantic segmentation-based approaches and graph-based approaches are two prevailing schemes. However, prior works show the imperfections that semantic segmentation-based approaches yield road graphs with low connectivity, while graph-based methods with iterative exploring paradigms and smaller receptive fields focus more on local information and are also time-consuming. In this paper, we propose a new scheme for multi-task satellite imagery road extraction, Patch-wise Road Keypoints Detection (PaRK-Detect). Building on top of D-LinkNet architecture and adopting the structure of keypoint detection, our framework predicts the position of patch-wise road keypoints and the adjacent relationships between them to construct road graphs in a single pass. Meanwhile, the multi-task framework also performs pixel-wise semantic segmentation and generates road segmentation masks. We evaluate our approach against the existing state-of-the-art methods on DeepGlobe, Massachusetts Roads, and RoadTracer datasets and achieve competitive or better results. We also demonstrate a considerable outperformance in terms of inference speed.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.