Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Beyond Discrete Selection: Continuous Embedding Space Optimization for Generative Feature Selection (2302.13221v4)

Published 26 Feb 2023 in cs.LG and cs.AI

Abstract: The goal of Feature Selection - comprising filter, wrapper, and embedded approaches - is to find the optimal feature subset for designated downstream tasks. Nevertheless, current feature selection methods are limited by: 1) the selection criteria of these methods are varied for different domains, making them hard to generalize; 2) the selection performance of these approaches drops significantly when processing high-dimensional feature space coupled with small sample size. In light of these challenges, we pose the question: can selected feature subsets be more robust, accurate, and input dimensionality agnostic? In this paper, we reformulate the feature selection problem as a deep differentiable optimization task and propose a new research perspective: conceptualizing discrete feature subsetting as continuous embedding space optimization. We introduce a novel and principled framework that encompasses a sequential encoder, an accuracy evaluator, a sequential decoder, and a gradient ascent optimizer. This comprehensive framework includes four important steps: preparation of features-accuracy training data, deep feature subset embedding, gradient-optimized search, and feature subset reconstruction. Specifically, we utilize reinforcement feature selection learning to generate diverse and high-quality training data and enhance generalization. By optimizing reconstruction and accuracy losses, we embed feature selection knowledge into a continuous space using an encoder-evaluator-decoder model structure. We employ a gradient ascent search algorithm to find better embeddings in the learned embedding space. Furthermore, we reconstruct feature selection solutions using these embeddings and select the feature subset with the highest performance for downstream tasks as the optimal subset.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.