Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Fast Attention Requires Bounded Entries (2302.13214v2)

Published 26 Feb 2023 in cs.LG, cs.CC, cs.DS, and stat.ML

Abstract: In modern machine learning, inner product attention computation is a fundamental task for training LLMs such as Transformer, GPT-1, BERT, GPT-2, GPT-3 and ChatGPT. Formally, in this problem, one is given as input three matrices $Q, K, V \in [-B,B]{n \times d}$, and the goal is to construct the matrix $\mathrm{Att}(Q,K,V) := \mathrm{diag}(A {\bf 1}_n){-1} A V \in \mathbb{R}{n \times d}$, where $A = \exp(QK\top/d)$ is the `attention matrix', and $\exp$ is applied entry-wise. Straightforward methods for this problem explicitly compute the $n \times n$ attention matrix $A$, and hence require time $\Omega(n2)$ even when $d = n{o(1)}$ is small. In this paper, we investigate whether faster algorithms are possible by implicitly making use of the matrix $A$. We present two results, showing that there is a sharp transition at $B = \Theta(\sqrt{\log n})$. $\bullet$ If $d = O(\log n)$ and $B = o(\sqrt{\log n})$, there is an $n{1+o(1)}$ time algorithm to approximate $\mathrm{Att}(Q,K,V)$ up to $1/\mathrm{poly}(n)$ additive error. $\bullet$ If $d = O(\log n)$ and $B = \Theta (\sqrt{\log n})$, assuming the Strong Exponential Time Hypothesis from fine-grained complexity theory, it is impossible to approximate $\mathrm{Att}(Q,K,V)$ up to $1/\mathrm{poly}(n)$ additive error in truly subquadratic time $n{2 - \Omega(1)}$. This gives a theoretical explanation for the phenomenon observed in practice that attention computation is much more efficient when the input matrices have smaller entries.

Citations (67)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)