Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Cosecure Domination: Hardness Results and Algorithm (2302.13031v1)

Published 25 Feb 2023 in cs.DM, cs.CC, and math.CO

Abstract: For a simple graph $G=(V,E)$ without any isolated vertex, a cosecure dominating set $D$ of $G$ satisfies the following two properties (i) $S$ is a dominating set of $G$, (ii) for every vertex $v \in S$ there exists a vertex $u \in V \setminus S$ such that $uv \in E$ and $(S \setminus {v}) \cup {u}$ is a dominating set of $G$. The minimum cardinality of a cosecure dominating set of $G$ is called cosecure domination number of $G$ and is denoted by $\gamma_{cs}(G)$. The Minimum Cosecure Domination problem is to find a cosecure dominating set of a graph $G$ of cardinality $\gamma_{cs}(G)$. The decision version of the problem is known to be NP-complete for bipartite, planar, and split graphs. Also, it is known that the Minimum Cosecure Domination problem is efficiently solvable for proper interval graphs and cographs. In this paper, we work on various important graph classes in an effort to reduce the complexity gap of the Minimum Cosecure Domination problem. We show that the decision version of the problem remains NP-complete for circle graphs, doubly chordal graphs, chordal bipartite graphs, star-convex bipartite graphs and comb-convex bipartite graphs. On the positive side, we give an efficient algorithm to compute the cosecure domination number of chain graphs, which is an important subclass of bipartite graphs. In addition, we show that the problem is linear-time solvable for bounded tree-width graphs. Further, we prove that the computational complexity of this problem varies from the domination problem.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube