Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sleep Model -- A Sequence Model for Predicting the Next Sleep Stage (2302.12709v1)

Published 17 Feb 2023 in eess.SP and cs.LG

Abstract: As sleep disorders are becoming more prevalent there is an urgent need to classify sleep stages in a less disturbing way.In particular, sleep-stage classification using simple sensors, such as single-channel electroencephalography (EEG), electrooculography (EOG), electromyography (EMG), or electrocardiography (ECG) has gained substantial interest. In this study, we proposed a sleep model that predicts the next sleep stage and used it to improve sleep classification accuracy. The sleep models were built using sleep-sequence data and employed either statistical $n$-gram or deep neural network-based models. We developed beam-search decoding to combine the information from the sensor and the sleep models. Furthermore, we evaluated the performance of the $n$-gram and long short-term memory (LSTM) recurrent neural network (RNN)-based sleep models and demonstrated the improvement of sleep-stage classification using an EOG sensor. The developed sleep models significantly improved the accuracy of sleep-stage classification, particularly in the absence of an EEG sensor.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)