Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 30 tok/s
Gemini 3.0 Pro 42 tok/s
Gemini 2.5 Flash 130 tok/s Pro
Kimi K2 200 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Sleep Model -- A Sequence Model for Predicting the Next Sleep Stage (2302.12709v1)

Published 17 Feb 2023 in eess.SP and cs.LG

Abstract: As sleep disorders are becoming more prevalent there is an urgent need to classify sleep stages in a less disturbing way.In particular, sleep-stage classification using simple sensors, such as single-channel electroencephalography (EEG), electrooculography (EOG), electromyography (EMG), or electrocardiography (ECG) has gained substantial interest. In this study, we proposed a sleep model that predicts the next sleep stage and used it to improve sleep classification accuracy. The sleep models were built using sleep-sequence data and employed either statistical $n$-gram or deep neural network-based models. We developed beam-search decoding to combine the information from the sensor and the sleep models. Furthermore, we evaluated the performance of the $n$-gram and long short-term memory (LSTM) recurrent neural network (RNN)-based sleep models and demonstrated the improvement of sleep-stage classification using an EOG sensor. The developed sleep models significantly improved the accuracy of sleep-stage classification, particularly in the absence of an EEG sensor.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.