Stochastic Simulated Quantum Annealing for Fast Solution of Combinatorial Optimization Problems (2302.12454v3)
Abstract: In this paper, we introduce stochastic simulated quantum annealing (SSQA) for large-scale combinatorial optimization problems. SSQA is designed based on stochastic computing and quantum Monte Carlo, which can simulate quantum annealing (QA) by using multiple replicas of spins (probabilistic bits) in classical computing. The use of stochastic computing leads to an efficient parallel spin-state update algorithm, enabling quick search for a solution around the global minimum energy. Therefore, SSQA realizes quantum-like annealing for large-scale problems and can handle fully connected models in combinatorial optimization, unlike QA. The proposed method is evaluated in MATLAB on graph isomorphism problems, which are typical combinatorial optimization problems. The proposed method achieves a convergence speed an order of magnitude faster than a conventional stochastic simulaated annealing method. Additionally, it can handle a 100-times larger problem size compared to QA and a 25-times larger problem size compared to a traditional SA method, respectively, for similar convergence probabilities.
- Quantum annealing for industry applications: introduction and review. Reports on Progress in Physics, 85(10):104001, sep 2022. doi:10.1088/1361-6633/ac8c54. URL https://doi.org/10.1088%2F1361-6633%2Fac8c54.
- Optimization by simulated annealing. Science, 220(4598):671–680, 1983.
- Optimization by simulated annealing: An experimental evaluation; part ii, graph coloring and number partitioning. Operations Research, 39(3):378–406, 1981.
- Limits of Computation: An Introduction to the Undecidable and the Intractable. Chapman and Hall/CRC, 2012. ISBN 1439882061.
- Tor Mykleburst. Solving maximum cut problems by simulated annealing. CoRR, arXiv:1505.03068, 2015. URL https://arxiv.org/abs/1505.03068.
- A 20k-spin ising chip to solve combinatorial optimization problems with cmos annealing. IEEE Journal of Solid-State Circuits, 51(1):303–309, 2016. doi:10.1109/JSSC.2015.2498601.
- Enhancing the solution quality of hardware ising-model solver via parallel tempering. In Proceedings of the International Conference on Computer-Aided Design, ICCAD ’18, New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450359504. doi:10.1145/3240765.3240806. URL https://doi.org/10.1145/3240765.3240806.
- Evidence for quantum annealing with more than one hundred qubits. Nature Physics, 10(3):218–224, 2014. doi:10.1038/nphys2900. URL https://doi.org/10.1038/nphys2900.
- J. Whittaker. System roadmap. D-Wave Systems, 2018.
- Hartmut Neven. When can quantum annealing win?, Jan. 2016. URL https://ai.googleblog.com/2015/12/when-can-quantum-annealing-win.html.
- Fast-converging simulated annealing for Ising models based on integral stochastic computing. IEEE Transactions on Neural Networks and Learning Systems, pages 1–7, 2022. doi:10.1109/TNNLS.2022.3159713.
- Stochastic p-bits for invertible logic. Physical Review X, 7, July 2017. doi:10.1103/PhysRevX.7.031014.
- B. R. Gaines. Stochastic computing systems. Adv. Inf. Syst. Sci. Plenum, 2(2):37–172, 1969. ISSN 0018-9340. doi:10.1109/12.954505.
- Stochastic neural computation. I. computational elements. IEEE Transactions on Computers, 50(9):891–905, Sep. 2001. ISSN 0018-9340. doi:10.1109/12.954505.
- Masuo Suzuki. Relationship between d-Dimensional Quantal Spin Systems and (d+1)-Dimensional Ising Systems: Equivalence, Critical Exponents and Systematic Approximants of the Partition Function and Spin Correlations. Progress of Theoretical Physics, 56(5):1454–1469, 11 1976. ISSN 0033-068X. doi:10.1143/PTP.56.1454. URL https://doi.org/10.1143/PTP.56.1454.
- Theory of quantum annealing of an ising spin glass. Science, 295(5564):2427–2430, mar 2002. doi:10.1126/science.1068774. URL https://doi.org/10.1126%2Fscience.1068774.
- Andrew Lucas. Ising formulations of many NP problems. Frontiers in Physics, 2:5, 2014. ISSN 2296-424X. doi:10.3389/fphy.2014.00005. URL https://www.frontiersin.org/article/10.3389/fphy.2014.00005.
- Experimental quantum annealing: case study involving the graph isomorphism problem. Scientific Reports, 5(1):11168, 2015. doi:10.1038/srep11168. URL https://doi.org/10.1038/srep11168.
- Rank-two relaxation heuristics for MAX-CUT and other binary quadratic programs. SIAM Journal on Optimization, 12(2):503–521, 2001.
- Gerhard Reinelt. TSPLIB–a traveling salesman problem library. ORSA Journal on Computing, 3(4):376–384, 1991.
- p-bits for probabilistic spin logic. Applied Physics Reviews, 6:011305, 2019a.
- Efficient CMOS invertible logic using stochastic computing. IEEE Transactions on Circuits and Systems I: Regular Papers, 66(6):2263–2274, June 2019. ISSN 1549-8328. doi:10.1109/TCSI.2018.2889732.
- In-hardware training chip based on CMOS invertible logic for machine learning. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(5):1541–1550, May 2020. ISSN 1558-0806. doi:10.1109/TCSI.2019.2960383.
- Boltzmann machines: Constraint satisfaction networks that learn. Technical Report CMU-CS-84-119, Department of Computer Science, Carnegie-Mellon University, 1984.
- VLSI implementation of deep neural network using integral stochastic computing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(10):2588–2599, Oct. 2017. ISSN 1063-8210. doi:10.1109/TVLSI.2017.2654298.
- Iterative decoding using stochastic computation. Electronics Letters, 39(3):299 – 301, Feb. 2003. ISSN 0013-5194. doi:10.1049/el:20030217.
- Computation on stochastic bit streams digital image processing case studies. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(3):449–462, Mar. 2014. ISSN 1063-8210. doi:10.1109/.2013.2247429.
- Y. Liu and K. K. Parhi. Architectures for recursive digital filters using stochastic computing. IEEE Transactions on Signal Processing, 64(14):3705–3718, July 2016. ISSN 1053-587X. doi:10.1109/TSP.2016.2552513.
- Memory-efficient fpga implementation of stochastic simulated annealing. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 13(1):108–118, 2023. doi:10.1109/JETCAS.2023.3243260.
- Scalable emulation of sign-problem free hamiltonians with room-temperature p-bits. Physical Review Applied, 12(3), sep 2019b. doi:10.1103/physrevapplied.12.034061. URL https://doi.org/10.1103%2Fphysrevapplied.12.034061.
- Demonstration of a scaling advantage for a quantum annealer over simulated annealing. Physical Review X, 8(3), jul 2018. doi:10.1103/physrevx.8.031016. URL https://doi.org/10.1103%2Fphysrevx.8.031016.