Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Scalable Space-efficient In-database Interpretability Framework for Embedding-based Semantic SQL Queries (2302.12178v3)

Published 23 Feb 2023 in cs.AI

Abstract: AI-Powered database (AI-DB) is a novel relational database system that uses a self-supervised neural network, database embedding, to enable semantic SQL queries on relational tables. In this paper, we describe an architecture and implementation of in-database interpretability infrastructure designed to provide simple, transparent, and relatable insights into ranked results of semantic SQL queries supported by AI-DB. We introduce a new co-occurrence based interpretability approach to capture relationships between relational entities and describe a space-efficient probabilistic Sketch implementation to store and process co-occurrence counts. Our approach provides both query-agnostic (global) and query-specific (local) interpretabilities. Experimental evaluation demonstrate that our in-database probabilistic approach provides the same interpretability quality as the precise space-inefficient approach, while providing scalable and space efficient runtime behavior (up to 8X space savings), without any user intervention.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.