Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Inequity aversion reduces travel time in the traffic light control problem (2302.12053v1)

Published 23 Feb 2023 in cs.MA

Abstract: The traffic light control problem is to improve the traffic flow by coordinating between the traffic lights. Recently, a successful deep reinforcement learning model, CoLight, was developed to capture the influences of neighboring intersections by a graph attention network. We propose IACoLight that boosts up to 11.4% the performance of CoLight by incorporating the Inequity Aversion (IA) model that reshapes each agent's reward by adding or subtracting advantageous or disadvantageous reward inequities compared to other agents. Unlike in the other applications of IA, where both advantageous and disadvantageous inequities are punished by considering negative coefficients, we allowed them to be also rewarded and explored a range of both positive and negative coefficients. Our experiments demonstrated that making CoLight agents averse to inequities improved the vehicles' average travel time and rewarding rather than punishing advantageous inequities enhanced the results.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.