Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 146 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Automatic Detecting Unethical Behavior in Open-source Software Projects (2302.11985v1)

Published 23 Feb 2023 in cs.SE

Abstract: Given the rapid growth of Open-Source Software (OSS) projects, ethical considerations are becoming more important. Past studies focused on specific ethical issues (e.g., gender bias and fairness in OSS). There is little to no study on the different types of unethical behavior in OSS projects. We present the first study of unethical behavior in OSS projects from the stakeholders' perspective. Our study of 316 GitHub issues provides a taxonomy of 15 types of unethical behavior guided by six ethical principles (e.g., autonomy).Examples of new unethical behavior include soft forking (copying a repository without forking) and self-promotion (promoting a repository without self-identifying as contributor to the repository). We also identify 18 types of software artifacts affected by the unethical behavior. The diverse types of unethical behavior identified in our study (1) call for attentions of developers and researchers when making contributions in GitHub, and (2) point to future research on automated detection of unethical behavior in OSS projects. Based on our study, we propose Etor, an approach that can automatically detect six types of unethical behavior by using ontological engineering and Semantic Web Rule Language (SWRL) rules to model GitHub attributes and software artifacts. Our evaluation on 195,621 GitHub issues (1,765 GitHub repositories) shows that Etor can automatically detect 548 unethical behavior with 74.8% average true positive rate. This shows the feasibility of automated detection of unethical behavior in OSS projects.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.