Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Unsupervised Noise adaptation using Data Simulation (2302.11981v1)

Published 23 Feb 2023 in cs.SD, cs.AI, and eess.AS

Abstract: Deep neural network based speech enhancement approaches aim to learn a noisy-to-clean transformation using a supervised learning paradigm. However, such a trained-well transformation is vulnerable to unseen noises that are not included in training set. In this work, we focus on the unsupervised noise adaptation problem in speech enhancement, where the ground truth of target domain data is completely unavailable. Specifically, we propose a generative adversarial network based method to efficiently learn a converse clean-to-noisy transformation using a few minutes of unpaired target domain data. Then this transformation is utilized to generate sufficient simulated data for domain adaptation of the enhancement model. Experimental results show that our method effectively mitigates the domain mismatch between training and test sets, and surpasses the best baseline by a large margin.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.